INVESTIGATING THE ZERO ${ }^{\text {th }}$ POWER

What does 2^{0} mean? How can you find the value of 17^{0} or 8^{0} ?
Follow the number patterns below to discover the meaning of the zero ${ }^{\text {th }}$ power.

TASK $1 \quad$ Follow the powers of 2

The table below shows some powers of 2. Follow this pattern backwards to complete this table.

2^{0}	2^{1}	2^{2}	2^{3}	2^{4}	2^{5}
		4	8	16	32

So what is the value of 2^{0} ? \qquad

TASK 2
 Follow the powers of 3

Use patterning to complete this table by inserting the index or basic numeral.

${ }_{3} \square$	3^{1}	${ }_{3} \square$	3^{3}	3^{\square}	3^{5}
1		9		81	

According to your investigation, 3^{0} must equal \qquad .

TASK $3 \quad$ Use the rule for dividing numbers with the same base

When dividing numbers with the same base, you can subtract the indices to simplify.
Complete the logic below to determine the value of any number to the power of zero.
$y^{3} \div y^{3}=y \square \quad$ Here y stands for 'any number'.
But when you divide a number by itself the answer is always \qquad . For example, $7 \div 7$ or $3 \div 3$
Therefore, what is the answer when you divide y^{3} by itself?
$y^{3} \div y^{3}=$ \qquad
So if $y^{3} \div y^{3}=y \square$ and $y^{3} \div y^{3}=$ \qquad then \qquad
Try this same logic with $k^{5} \div k^{5}$ or $t^{20} \div t^{20}$ or even $9^{7} \div 9^{7}$.

TASK 4 Write a conclusion

From tasks 1, 2 and 3, what can you conclude?

