INVESTIGATING THE ZEROth POWER

What does 2^0 mean? How can you find the value of 17^0 or 8^0 ? Follow the number patterns below to discover the meaning of the zeroth power.

TASK 1Follow the powers of 2

The table below shows some powers of 2. Follow this pattern backwards to complete this table.

2 ⁰	21	2 ²	2 ³	24	2 ⁵
		4	8	16	32

So what is the value of 2^0 ?

TASK 2Follow the powers of 3

Use patterning to complete this table by inserting the index or basic numeral.

3	3 ¹	3	3 ³	3	3 ⁵
1		9		81	

According to your investigation, 3⁰ must equal _____.

TASK 3 Use the rule for dividing numbers with the same base

When dividing numbers with the same base, you can *subtract* the indices to simplify. Complete the logic below to determine the value of any number to the power of zero.

 $y^3 \div y^3 = y$ Here y stands for 'any number'.

```
But when you divide a number by itself the answer is always _____. For example, 7 \div 7 or 3 \div 3
Therefore, what is the answer when you divide y^3 by itself? y^3 \div y^3 = _____
```

```
So if y^3 \div y^3 = y \square and y^3 \div y^3 = ______ then _____
```

Try this same logic with $k^5 \div k^5$ or $t^{20} \div t^{20}$ or even $9^7 \div 9^7$.

TASK 4 Write a conclusion

From tasks 1, 2 and 3, what can you conclude?