INVESTIGATING THE ZEROth POWER

SOLUTIONS

TASK 1 Follow the powers of 2											
2 ⁰		2 ¹	2 ²	2 ³	24	2 ⁵	Divide the term on the right by 2.				
1		2	4	8	16	32	Divide the term on the right by 2.				

So what is the value of 2^{0} ? 1

TASK 2

Follow the powers of 3

3 ⁰	31	3 ²	3 ³	34	3 ⁵
1	3	9	27	81	243

According to your investigation, 3^0 must equal **1**.

TASK 3 Use the rule for dividing numbers with the same base

 $y^3 \div y^3 = y^0$ Subtract the indices and leave the base the same.

But when you divide a number by itself the answer is always 1.

Therefore, $y^3 \div y^3 = 1$

TASK 4

So if $y^3 \div y^3 = y^0$ and $y^3 \div y^3 = 1$, then $y^0 = 1$.

Write a conclusion

Any number to the power of zero equals 1.

Using algebra, you can write your conclusion as $y^0 = 1$.