INVESTIGATING THE ZERO ${ }^{\text {th }}$ POWER

SOLUTIONS

TASK $1 \quad$ Follow the powers of 2

2^{0}	2^{1}	2^{2}	2^{3}	2^{4}	2^{5}
1	2	4	8	16	32

So what is the value of 2^{0} ? 1

TASK 2 Follow the powers of 3

3^{0}	3^{1}	3^{2}	3^{3}	3^{4}	3^{5}
1	3	9	27	81	243

According to your investigation, 3^{0} must equal 1.

TASK $3 \quad$ Use the rule for dividing numbers with the same base
$y^{3} \div y^{3}=y^{0}$ Subtract the indices and leave the base the same.
But when you divide a number by itself the answer is always 1 .
Therefore, $y^{3} \div y^{3}=1$
So if $y^{3} \div y^{3}=y^{0}$ and $y^{3} \div y^{3}=1$, then $y^{0}=1$.

TASK $4 \quad$ Write a conclusion

Any number to the power of zero equals 1 .
Using algebra, you can write your conclusion as $y^{0}=1$.

