Higher Check In - 6.01 Algebraic expressions

1. Simplify $2 x^{2}+3 x y+4 x^{2}-y x$.
2. Factorise $3 x^{2}-12$.
3. Multiply out the brackets and simplify $4(3-2 x)-2(x-3)^{2}$.
4. Simplify $5 x^{-2} y^{\frac{1}{3}} \times 3 x^{4} y$.
5. Expand the brackets and simplify $(2 x+3)(3 x-1)(x+2)$.
6. Show that $\frac{x^{2}+2 x}{x^{2}+x-2}+\frac{x}{x-1} \equiv \frac{2 x}{x-1}$.
7. Sue says that the area of the trapezium can be given by the expression $x^{2}+6 x+8$. Ambia says that the area can be written as $(x+3)^{2}-1$. Show that both Sue and Ambia are correct.

8. Explain, using algebra, why the sum of two consecutive odd numbers is always even.
9. The area of the rectangle below is given by the expression $2 x^{2}+13 x-24 \mathrm{~cm}^{2}$. The width is given by $2 x-3 \mathrm{~cm}^{2}$. Write an expression for the length.

10. A particle travels $(x+3) \mathrm{m}$ at a speed of $2 \mathrm{~m} / \mathrm{s}$ and $(x-5) \mathrm{m}$ at a speed of $3 \mathrm{~m} / \mathrm{s}$. Write a simplified expression for the total time taken.

Extension

Match each quadratic expression with its factorised form and completed square form. There is one blank space in each column for you to fill in the missing expression to complete each set.

$x^{2}+13 x+36$	$(x-11)(x-7)$	$(x-3)^{2}-36$
$x^{2}-14 x-32$	$(x+6)(x+8)$	$(x-8)^{2}-36$
$x^{2}-18 x+77$	$(x+2)(x+6)$	$\left(x+\frac{5}{2}\right)^{2}-\frac{289}{4}$
$x^{2}-3 x-28$	$(x+7)(x-12)$	$(x+9)(x+4)$
$x^{2}+14 x+48$	$(x-2)(x-14)$	$(x-7)^{2}-81$
$x^{2}+5 x-66$	$(x+3)(x-9)$	$\left(x-\frac{3}{2}\right)^{2}-\frac{121}{4}$
$x^{2}-6 x-27$	$(x-16)(x+2)$	$\left(x+\frac{13}{2}\right)^{2}-\frac{25}{4}$
$x^{2}-16 x+28$	$(x+7)^{2}-1$	
$x^{2}-5 x-84$		$(x-9)^{2}-4$

Assessment objective	Qu.	Topic	R	A	G
AO1	1	Simplify an algebraic expression			
AO1	2	Factorise a quadratic expression			
AO1	3	Expand brackets and collect like terms			
AO1	4	Simplify a product of two algebraic expressions involving indices			
AO1	5	Expand three brackets and simplify			
AO2	6	Add two algebraic fractions and simplify			
AO2	7	Translate a word problem into two equivalent expressions for area by expanding brackets and completing the square			
AO2	8	Prove a numerical result using algebra			
AO3	9	Factorise a quadratic expression to solve a problem involving area			
AO3	10	Solve a problem involving algebraic fractions			

Assessment objective	Qu.	Topic	R	A	G
AO1	1	Simplify an algebraic expression			
AO1	2	Factorise a quadratic expression			
AO1	3	Expand brackets and collect like terms			
AO1	4	Simplify a product of two algebraic expressions involving indices			
AO1	5	Expand three brackets and simplify			
AO2	6	Add two algebraic fractions and simplify			
AO2	7	Translate a word problem into two equivalent expressions for area by expanding brackets and completing the square			
AO2	8	Prove a numerical result using algebra			
AO3	9	Factorise a quadratic expression to solve a problem involving area			
AO3	10	Solve a problem involving algebraic fractions			

Assessment Objective	Qu.	Topic	R	A	G
AO1	1	Simplify an algebraic expression			
AO1	2	Factorise a quadratic expression			
AO1	3	Expand brackets and collect like terms			
AO1	4	Simplify a product of two algebraic expressions involving indices			
AO1	5	Expand three brackets and simplify			
AO2	6	Add two algebraic fractions and simplify			
AO2	7	Translate a word problem into two equivalent expressions for area by expanding brackets and completing the square			
AO2	8	Prove a numerical result using algebra			
AO3	9	Factorise a quadratic expression to solve a problem involving area			
AO3	10	Solve a problem involving algebraic fractions			

Assessment objective	Qu.	Topic	R	A	G
AO1	1	Simplify an algebraic expression			
AO1	2	Factorise a quadratic expression			
AO1	3	Expand brackets and collect like terms			
AO1	4	Simplify a product of two algebraic expressions involving indices			
AO1	5	Expand three brackets and simplify			
AO2	6	Add two algebraic fractions and simplify			
AO2	7	Translate a word problem into two equivalent expressions for area by expanding brackets and completing the square			
AO2	8	Prove a numerical result using algebra			
AO3	9	Factorise a quadratic expression to solve a problem involving area			
AO3	10	Solve a problem involving algebraic fractions			

