YEAR 9: PYTHAGORAS ASSESSMENT TASK

THE PATH OF A BILLIARD BALL

A billiard table has only two pockets, one red and one blue.

- A player always hits the ball from the top left-hand corner as shown in the diagram.
- The ball is always hit at a 45° angle to the side of the table.
- The ball continues to rebound, as shown in the diagram, at the same angle (45°) until it lands in the blue pocket.

Part 1

3×5 table

Consider a billiard table that is 5 units long and 3 units wide.

- **a** On 1 cm grid paper draw the billiard table shown above. Continue the path traced out by the ball until it lands in the blue pocket.
- b Describe the pattern obtained.
- c How many times did the ball rebound?
- d Use Pythagoras' theorem to find the following, correct to 2 decimal places:
 - i the distance the ball travels in section 1
 - ii the distance the ball travels in section 2
 - iii the distance the ball travels in section 3
- ${f e}$ Find the total distance travelled by the ball. Use your answers from part ${f d}$, above.
- **f** What difference would it make to your answer in part **e** if you had calculated each section exactly, instead of rounding off?

Part 2

Different-sized tables

- **a** For each of the following table sizes (width × length) draw a diagram of the path of the ball.
 - i 3×4 ii 3×5 iii 3×6 iv 3×8 v 3×9 vi 4×5 vii 4×6 viii 5×7
- b i For which sized tables does the ball land in the blue pocket?
 - ii For these tables calculate the total distance travelled by the ball.
- c What can you conclude about the size of the tables and whether or not the ball lands in the blue pocket?
- d Can the total distance travelled by the billiard ball be calculated from the dimensions of the table? If so, explain.